Calculus of Variations Part 2: Lines, Bubbles, and Lagrange

In the first part, we discussed the idea of a functional, what it means, and how to find its extrema using the calculus of variations. However, those equations don’t really capture how amazing and applicable calculus of variations really is so the following will be some examples of this. In fact, the drawn out results from the posts The Shape of a String and The Lagrangian are just two cases of the one equation.

Read More »

Differential Forms Part 2: Differential Operators and Stokes Theorem

In the first post, we established a general intuition of how forms work and why they may provide a better geometric intuition of what is actually occurring. It was mentioned that these ideas extend the ideas of vector calculus so it seems natural to see how differential operators like gradient, curl, and divergence arise in the context of differential forms. It all comes out of the analysis of the exterior derivative \textup{d} . I will stick to 3 dimensions for now and explain the extension into higher dimensions at the end.

Read More »