Philosophy of Quantum Mechanics

Quantum Mechanics since its inception has been one of the most philosophically controversial concepts in all of physics. But what really is so confusing about quantum mechanics? The answer lies in two fundamental principles: locality and realism.

Locality – locality asserts that all information and matter in the universe is limited by the speed of light. No experiment has ever contradicted this principle thus far. One may bring up the idea of quantum entanglement with EPR pairs but if you refer to my post on Quantum Teleportation, I discuss how, even in this case, no information can actually be sent faster than the speed of light preserving locality. An interesting visualization of this is the following with light cones.

Light cone.png

Read More »

Quaternions Revisited

It has admittedly been quite a while since my last post over a year ago. I thought I would restart the posts by revisiting one of the first topics I discussed on the website: quaternions. My previous post, upon review, seems to be quite uninformative on what the nature and use of them are which I will attempt to show in this post.

Formalism

Quaternions are a generalization of complex numbers (\mathbb{C}  ) or hypercomplex numbers and they are denoted with \mathbb{H}  . Below I write both in their general form.

\displaystyle \mathbb{C}: a+bi 

\displaystyle \mathbb{H}: a+bi+cj+dk 
where  \displaystyle ijk=i^2=j^2=k^2=-1 

Now, there are 3 “imaginary” components and they are defined by that relation at the bottom. This is super interesting! What does this even mean though? A real number with some sort of 3-dimensional imaginary component?
quaternions

Read More »

Calculus of Variations Part 2: Lines, Bubbles, and Lagrange

In the first part, we discussed the idea of a functional, what it means, and how to find its extrema using the calculus of variations. However, those equations don’t really capture how amazing and applicable calculus of variations really is so the following will be some examples of this. In fact, the drawn out results from the posts The Shape of a String and The Lagrangian are just two cases of the one equation.

Read More »

Differential Forms Part 2: Differential Operators and Stokes Theorem

In the first post, we established a general intuition of how forms work and why they may provide a better geometric intuition of what is actually occurring. It was mentioned that these ideas extend the ideas of vector calculus so it seems natural to see how differential operators like gradient, curl, and divergence arise in the context of differential forms. It all comes out of the analysis of the exterior derivative \textup{d} . I will stick to 3 dimensions for now and explain the extension into higher dimensions at the end.

Read More »

Orders of ∞

The idea of infinity is easy to look over upon first glance. It can simply be defined as the idea that numbers go on forever and it is easy to end there. However, there are very developed and well-defined notions of infinity suggest that there are different orders and types of infinity which come with various properties. The consideration of all these are vital to our understanding of infinite quantities and especially in set theory. The exploration of these transfinite numbers Read More »

Differential Forms Part 1: Dimensions and Notation

Differential forms is a topic that, in some sense, extends ideas presented in vector calculus with more suggestive notation and geometric intuition into higher dimensions. The distinction may seem small and insignificant especially in the third dimension that we live in but its results and implications are quite elegant and can lead to nice formalization of certain results such as Stokes’ Theorem. Read More »

Some Resummation Theory

Perturbation theory, as mentioned in an earlier post, is a very important part of the study of many fields but a recurring problem is the issue of summing divergent sequences which sometimes arise in a solution. Even some convergent solutions are very hard to sum because we can only calculate the first two or three terms in a reasonable amount of time. As a result, the study of these infinite summation become very important to advance the field.Read More »

General Relativity

General Relativity is perhaps one of the most enlightening theories in all of physics that reconciles many fundamental ideas about gravity, mass, and spacetime. The understanding of such a theory requires, in some sense, a certain conceptual jump which in the past has been explained through a “stretchy fabric” where mass acts as wells and other masses fall into these wells acting as a conceptual picture of general relativity. If you don’t know what I’m talking about, watch this video. This is immensely flawed in many ways. Read More »